Diagonal reduction algebras of gl type

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagonal Bases in Orlik-solomon Type Algebras

To encode an important property of the “no broken circuit bases” of the Orlik-Solomon-Terao algebras, András Szenes has introduced a particular type of bases, the so called “diagonal basis”. We prove that this definition extends naturally to a large class of algebras, the so called χ-algebras. Our definitions make also use of an “iterative residue formula” based on the matroidal operation of co...

متن کامل

Gröbner and Diagonal Bases in Orlik-solomon Type Algebras

The Orlik-Solomon algebra of a matroid M is the quotient of the exterior algebra on the points by the ideal I(M) generated by the boundaries of the circuits of the matroid. There is an isomorphism between the OrlikSolomon algebra of a complex matroid and the cohomology of the complement of a complex arrangement of hyperplanes. In this article a generalization of the Orlik-Solomon algebras, call...

متن کامل

Polynomial super-gl(n) algebras

We introduce a class of finite dimensional nonlinear superalgebras L = L0 + L1 providing gradings of L0 = gl(n) ' sl(n) + gl(1). Odd generators close by anticommutation on polynomials (of degree > 1) in the gl(n) generators. Specifically, we investigate ‘type I’ super-gl(n) algebras, having odd generators transforming in a single irreducible representation of gl(n) together with its contragredi...

متن کامل

Rees Algebras of Diagonal Ideals

There is a natural epimorphism from the symmetric algebra to the Rees algebra of an ideal. When this epimorphism is an isomorphism, we say that the ideal is of linear type. Given two determinantal rings over a field, we consider the diagonal ideal, kernel of the multiplication map. We prove in many cases that the diagonal ideal is of linear type and recover the defining ideal of the Rees algebr...

متن کامل

Diagonal Matrix Reduction over Refinement Rings

  Abstract: A ring R is called a refinement ring if the monoid of finitely generated projective R- modules is refinement.  Let R be a commutative refinement ring and M, N, be two finitely generated projective R-nodules, then M~N  if and only if Mm ~Nm for all maximal ideal m of  R. A rectangular matrix A over R admits diagonal reduction if there exit invertible matrices p and Q such that PAQ is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Functional Analysis and Its Applications

سال: 2010

ISSN: 0016-2663,1573-8485

DOI: 10.1007/s10688-010-0023-0